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An investigation of the mathematical model of a compacting medium proposed by 
McKenzie (1984) for the purpose of understanding the migration and segregation of 
melts in the Earth is presented. The numerical observation that the governing 
equations admit solutions in the form of nonlinear one-dimensional waves of 
permanent shape is confirmed analytically. The properties of these solitary waves are 
presented, namely phase speed as a function of melt content, nonlinear interaction 
and conservation quantities. The information at hand suggests that these waves are 
not solitons. 

1. Introduction 
This paper arises from our attempt to understand the geophysical problem 

associated with melt segregation. The problem can be stated thus: large volumes of 
molten rock are extruded onto the surface or exist as magma chambers, yet 
laboratory studies of Earth materials at pressures and temperatures comparable with 
those in the Earth’s interior show that a t  best only a small degree of partial melting 
can occur (typically less than 10 yo). The geophysicists are therefore forced to conclude 
that the molten rocks that have erupted onto the surface or in magma chambers must 
have segregated or migrated over large distances. 

How does this segregation/migration process take place ? In an attempt to answer 
this question, mathematical models of the migration process have been proposed 
(Sleep 1974; Walker, Stolper & Hays 1978). The one that we shall use is that of 
McKenzie (1984) together with further elaborations by Richter 6 McKenzie (1984). 
In this model, both the solid matrix and the fluid melt are treated as two immiscible 
fluids of constant, but different, densities. Since these two fluids interpenetrate each 
other and their contact surface is extremely convoluted, the approach of two-phase 
fluid mechanics is adopted. In particular, at any given point in the medium, a field 
$(x, t )  is defined which represents the volume fraction of melt. This field is analogous 
to the traditional porosity in the theory of flows through porous media. Another 
characteristic of flows through porous media is the permeability K, which represents 
a measure of the ability of the fluid to traverse the porous region. An essential feature 
of the McKenzie model is that the permeability K is related to the voidage q5 by means 
of a power law 

The flow of melt in a given region is more or less impeded by the solid matrix, 
depending upon the value of the voidage in that region. 

A t  this early stage of its development, the model does not account for changes of 
phase. In other words, it is assumed that the rocks have already partially melted and 
only the subsequent migration of the melt under the action of gravity is considered. 

This paper is concerned with the one-dimensional version of the model studied by 

K = 
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Richter & McKenzie (1984). In that paper, as well as in Scott & Stevenson (1984), 
it  was noticed that arbitrary initial distributions of voidage broke up into a series 
of rank-ordered, finite-amplitude waves of permanent shape. We shall investigate, 
both analytically and numerically, the properties of these waves in some detail. In 
particular, we shall exhibit their shapes and study their speed of propagation as a 
function of amplitude and background properties. Finally, we shall examine the 
question of whether or not these solitary waves are solitons. The designation of 
solitons is reserved for solitary waves that have the peculiar property of going 
through a nonlinear interaction unscathed. It is widely believed that this property 
is associated with the fact that solitons satisfy an infinite number of conservation 
laws. Therefore, we have performed some numerical experiments involving two 
interacting waves and have initiated a systematic search for conservation laws. The 
preliminary conclusions are that these solitary waves are not solitons. 

2. The mathematical model 
A microscopic picture of the matrix/melt system is given schematically in figure 1. 

If the rock is sliced and viewed in plan, the melt appears confined to those places 
where three grain boundaries meet. In three dimensions, however, the melt can form 
an interconnected network around the grains as shown in part ( b )  of the figure. The 
degree of melting required for the melt phase to be completely interconnected depends 
on the surface energies, and hence on the composition of the original rock. In the case 
of basaltic systems, which are the most common volcanic source, it is believed that 
the melt remains interconnected down to vanishingly small degrees of melt (McKenzie 
1984). 

In order to simplify the analysis, we adopt a macroscopic two-phase approach for 
the description of the matrix/melt system. We refer the reader to McKenzie (1984) 
and Richter & McKenzie (1984) for a full discussion of the assumptions and 
approximations underlying the model that we shall use. Here, we ignore the 
difficulties concerning two-phase fluid flows and reduce the derivation of the 
governing equations to a formal correspondence between microscopic and macroscopic 
fields. We shall denote macroscopic fields by superscripts (1) for the melt and (2) for 
the solid matrix ; microscopic fields will have subscripts m and s. A t  the heart of the 
correspondence is an averaging procedure over a volume of dimension both much 
smaller than any macroscopic characteristic length and much larger than the 
microscopic lengthscale. Keeping this averaging control volume in mind, we write 
the densities as 

where 4 is the volumeric fraction of melt. As is typical with macroscopic descriptions, 
both p( l )  and p ( 2 )  can be evaluated at the same point x. Momentum considerations 
enable us to write 

4Pm vm 7 
p( l )v ( l )  = 

p ( W 2 )  = ( l -$)p ,  v,, 
and hence 

In the following, we shall dispense with subscripts and superscripts for the velocity 
fields : lower and upper case v and Vwill denote both the microscopic and macroscopic 
velocity field of the melt and solid matrix respectively. 
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(4 (b)  
FIQURE 1. Schematic diagrams of melt distribution. (a )  Solid grains with interstitial melt along 
boundaries where three grains meet. ( b )  The fluid phase as a three-dimensional network of 
interconnected melt tubes. 

Finally, from force considerations, we have 

where ut, is the stress tensor. The balance of forces for each phase is written as follows : 

In  the above equations, Pi) stands for the body force per unit maas in the ith phase, 
whereas $0 is the extra force arising from the two-phase nature of the flow (Drew 
& Segell971). Note that the inertial forces have been neglected. The only body forces 
in the problem are gravitational: 

where g is the gravitational acceleration and St, is the Kronecker delta. 
The next step consists in specifying constitutive relations. Those used by McKenzie 

are : 

Thus the interaction is a function of the pressure p, in the melt, the voidage 4, the 
relative velocity between the two phases and the permeability K. The stresses in the 
melt are isotropic and proportional to the pressure. However, this does not mean that 
the melt is an inviscid fluid. In  fact its viscosity p enters explicitly in (2.5). The solid 
matrix is treated as a viscous, compressible non-Stokesian fluid with bulk viscosity 
[* and shear viscosity r ] * .  The working versions of the momentum equations become 

$(v-  V)+p- 'KVP= 0, (2.8) 

(2.9) ?#lvzv+ ([+f?#l) V(V* V)-VP- @,-pm)g(l -9)k = 0. 
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In arriving a t  these equations, it was assumed that 
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5 = ( 1  -4) 5*, 
11 = ( 1  -4) 11* 
P =Pm+Prngz* are constants and that 

The formulation is completed by the conservation-of-mass equations, viz 

34 ---+V.(l-+) at v =  0, 

(2.10) 

(2.11) 

and the power law K = K 0 g n .  (2.12) 

Values of n of around 3 are typical for the geophysical situations of interest. 
We shall non-dimensionalize the various fields as follows : 

(2.13) 

where Ap = ps-prn and W ,  w denote respectively the vertical velocity in the solid 
phase and in the melt. Dropping the primes and eliminating P and w, the non- 
dimensional equations reduce to 

(2.14) 

(2.15) 

The above equations are identical to those given in Richter & McKenzie (1984) except 
for the non-dimensionalization of time. With the present non-dimensionalization 
there exists an interior solution 4 = 1,  W = - 1 which represents a uniform, 
compacting, free subsidence of solid matrix relative to the melt. In our analysis of 
solitary waves, we shall assume this solution as the background state on which the 
disturbances are superimposed. 

3. Solitary waves 
Figure 2 shows an initial distribution of voidage $(z,  0) as well as its evolution at  

various later times. These profiles have been obtained by numerically integrating 
(2.14)-(2.15) for n = 3. The numerical methods are discussed in Appendix A. As we 
can see, the original disturbance breaks up into a series of spikes which are ordered 
in rank and which propagate without apparent subsequent change in shape. This 
numerical experiment is typical of several we have run and strongly suggests the 
existence of solitary waves of permanent form. 
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FIQURE 2. Fluid fraction q5 aa a function of depth. The solid curve is the initial voidage distribution 
which evolves into a series of discrete pulses (daahed curve) suggesting the existence of solitary 
waves. 

We look for such waves by searching for solutions of the form 

1 q5(z,t) = f ( z - c t ) ,  

W(z , t )  = g ( 2 - c t ) .  

-cf = “1 -$of IgI’, 

The governing equations become 

where primes denote differentiation with respect to the argument 6 = z-ct .  By 
integrating (3.2) once we can express g in terms off: 

In arriving at this expression for the vertical velocity we have assumed that far from 
the disturbance the voidage q5 tends to 1, which is the value in the uniform compacting 
background solution. Similarly, the velocity of the solid matrix tends to the uniform 
compacting velocity. In other words 

By eliminating g from the problem, we are led to a single nonlinear ordinary 
differential equation : 

where P =f. 
We have exploited the fact that (3.2) and (3.3) are autonomous to eliminate 6 from 
the problem. In the phase plane ( f , p ) ,  the solitary waves of permanent form 
correspond to the homoclinic trajectories that start at (1, 0), form an arch in the first 
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quadrant, cross the f-axis at f = A and return to the point ( 1 , O )  in a symmetric 
fashion. To simplify the description of these trajectories, we define 

1 

C(f; 4 0  = - (3.7) 

xn(l - dof l3 
The desired trajectories are then given by 

The relationship between the maximum amplitude A of a wave and its phase speed 
c is then 

c = C(A;  q50, n). (3.9) 

In figure 3 we display this dependence of the phase speed on the amplitude for 
various choices of the far-field voidage $o.  For a maximal-amplitude A ,  c increases 
with decreasing $o. The dependence of C(A ; g50, n) on the exponent n of the power 
law between the permeability and voidage is shown in figure 4. It is comforting to 
see that n = 3 is typical of a range of values of the exponent. 

To compute the shape of the solitary wave we introduce 

The shape is then given by the implicit function 

(3.11) 

Since P(x;  A ,  $o, n) vanishes for z = A ,  (3.11) is modified slightly for the purpose of 
numerical integration. Firstly, we Taylor expand P, viz 

P2(f;A,q50,n) = 2 ~ ( f - A ) +  ..., (3.12) 

We then replace (3.1 1)  with 

(3.14) 

Incidentally, K is the curvature of the shape of the solitary wave at the maximum 
height. 

The procedure used to generate solitary waves such as those in figure 5 is as follows. 
Values of g50 and n are selected. Then C( f ;  q50, n) is tabulated for values off between 
1 and &l;  the values off,,, and C,,, a t  which dC/df vanishes are recorded. Next 
a value of A in the range (l,fmax) is selected. The speed C(A;  q50, n) of the wave of 
this amplitude is read. Finally, P ( x ;  A ,  #o, n) is computed for x in (1 ,  A )  and then 5 
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FIQURE 3. Phase speed of solitary waves as a function of their peak amplitude for different values 
of the background voidage q50: - 9 q5 0 -  - 0.01; ----, 0.02; ----, 0.05; ........, 0.1. n = 3 in 
all cases. 
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FIQURE 4. Phase speed of solitary waves as a function of their peak amplitude for different values 
, 2.5. 

The background voidage q50 is 0.02 in all caaes. 
of n, the exponent in the permeability-voidage relation: n = 4; ----, 3.5; .. . ....., 3; -.-.- 
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FIGURE 5, Shape of solitary waves for different choices of background voidage Co, exponent n and 
amplitude: - , q5,,=0.05, n = 5 ;  -.-.- , q50 = 0.05, n = 3; ------ , #o = 0.01, n = 3; .... ...., 
#o = 0.01, n = 3. 

is found by means of (3.14). The very last step consists in inverting this implicit 
relation between andf. A measure of the accuracy of our numerical integration is 
obtained by using the solitary waves thus computed as initial conditions for 
integrating numerically the evolution equations. We find that these waves propagate 
without change of shape to within an accuracy of better than 0.1 % over distances 
of many pulse widths. 

We have already remarked that K is the negative curvature of the solitary wave 
at = 0. Since dC/df If--A tends to zero as A tends tof,,,, it is clear that the fastest 
wave is singular. Indeed, not only is 

but all the derivatives off vanish at 6 = 0. 
We conclude this section by considering the very useful approximation q50 < 1, i.e. 

the small background melt. For this case and for n = 3, we can greatly simplify the 
analysis and arrive at analytical formulas for the phase speed and shape. Indeed, the 
governing equations (3.2) and (3.3) reduce to 

A =  wz9 (3.15) 

(3.16) 

or, in terms of q5 alone, (3.17) 
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FIQURE 6. Nonlinear interaction of a solitary wave of amplitude 5 with one of amplitude 2. The 
background voidage #o = 0.01 and n = 3. The voidage distribution va depth is plotted at a 
succession of times. 

z 

The counterpart of (3.6) for the trajectory in the phase plane is 

+ 1 = 0 ,  1c -- dp2 c ( f - l ) + l  
df f* 

(3.18) 

and the analogue of (3.9) is c = 2 A + l .  (3.19) 

Finally the shape equation (3.11) reduces to 

(3.20) 
( A  - 1 )t - ( A  -f ,t 
( A  - l)i+ (A-f)C 

The shape given by (3.20) differs little from the exact solution found when $o terms 
are retained, yet when (3.20) is used as an initial condition for the numerical 
integration of the full equations a dispersive tail of order do is left behind. Thus it 
is important to use as exact an initial condition as possible, especially in the 
investigation of the interaction of two solitary waves. 

4. Interaction of solitary waves 
The designation of soliton has come to imply solitary waves that can pass through 

each other and emerge unscathed by the interaction (Drazin 1984, p. 3). Figure 6 
shows what appear to be solitons; the only effect of the interaction is an advance 
(in the (z,t)-plane) of the wave with the larger amplitude and a slight retardation 
of the smaller wave. On closer inspection (see figure 7) we can see that a small 
dispersive tail has been left behind at the place where the waves interacted. This 
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FIQUBE 7. Magnification of the voidage around the background value, for the four times shown 
in figure 6, namely (a) t = 0, (a) 0.1, (c) 0.2 and (d) 0.3. The imperfection of the interaction of the 
solitary waves is clearly apparent. 

result is very reminiscent of that found by Bona, Pritchard & Scott (1980) for the 
BBM equation (Benjamin, Bona & Mahony 1972), and suggests that the solitary 
waves under consideration are not solitons. This suspicion is strengthened further by 
the fact that (3.8) is not of the Painlev6 form. 

It is important that we be able to show that the imperfections of the interaction 
of the solitary waves are not due to an artifact of the numerical methods. To that 
effect, several runs have been made, as a result of which we can show that the 
dispersive waves seen in figure 7 are much larger than the error associated with the 
propagation of a single solitary wave. This can be seen in figure 8, which exhibits 
the larger solitary wave travelling alone; while there is a small error due to the 
discretization of the initial condition, it is about an order of magnitude smaller than 
the oscillations in figure 7. Secondly, figure 9 shows that the post-interactive wave 
is unchanged after the time step has been halved. 

There is still no general test which can discriminate between solitons and ordinary 
solitary waves. However, one of the tenets of the theory of nonlinear wave 
propagation is that solitons possess an infinite number of conservation laws. In  the 
next section, we shall outline a procedure for the systematic search for such 
conservation laws. 

5. Conservation laws 
In  this section, we initiate a systematic search for conservation laws. This search 

is carried out on the simplest version of our problem, namely for the $,, 4 1 case, 
i.e. for the evolution equation (3.17), which we rewrite as follows: 
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FIGURE 9. Magnificaiion at  t = 0.3 of the voidage q5 around its background value q50 for the 
interaction shown in figure 6. (a) corresponds to figure 7 (d) ; (b) is the result when the time step used 
in the numerical calculations is increased by a factor of 2. The major oscillations left behind the 
interaction are essentially unchanged, suggesting that they have been well resolved by the 
numerical solution. 



440 

This equation is reminiscent of the BBM equation already alluded to, namely 
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$zzt = $t - $42.  (5.2) 

For this equation, Olver (1979) has shown that there exist only three conservation 
laws. Because of the complicated form of our evolution equation, we shall not be able 
to arrive at a definitive conclusion about the actual number of conservation laws. 
However, the analysis which follows, as well as that in Appendix B, suggests that 
there are only two conservation laws for (5.1). 

By conservation law for an evolution equation of the form (5.1), one means a pair 
of quantities 

Tn($, $2,  $2 ... z >  * . * ) ,  (5.3) 

X n ( A  * * a  ... z >  A,&), (5.4) 

Several remarks are in order at this stage. First, we draw attention to the fact that 
T, depends on $ and possibly many z-derivatives of $ but not on t-derivatives of 4. 
This is because one ought to be able to evaluate T, at t = 0; hence it should only 
be a function of the initial conditions. Indeed, by integrating (5.5) over z from - 00 

to + 0 0 ,  we get 
,? r + m  

J T,dz=O, 
at 

i.e. the integral of T, is a conserved quantity. In contrast, X, can depend on 
t-derivatives of $. But, as (5.4) indicates, only the dependence on $t and $zt needs 
to be included. Indeed, $zft ,  $ZZzt ,  etc. can be expressed in terms of #t and $zt as well 
as z-derivatives of $ through (5.1). Finally, higher t-derivatives of $ cannot be 
balanced by any terms in the left-hand side of (5.5) and hence need not be included. 

We can now state the results of our search. We have been able to obtain two 
conservation laws associated with functionals To($) and Tl($, 0,). In addition, we 
have been able to show that there are no conservation laws associated with 
functionals of the form !7'J$, $z,  $,,) or T3($, $,, $,,, $,,,). These results lead us to 
believe that there are only two conservation laws for (5.1). 

We start by proving that X must be a linear function of $t and &. The proof follows 
that of Olver. Consider the generic pair 

where we have used ak = (5.9) 

and a p  = a / w ,  > a, = a/w,,. (5.10) 

As previously mentioned, we can write $kzt in terms of $t, $zt ,  and z-derivatives of 
$ by differentiating the evolution equation (5.1). Therefore 

$kzt = % $t + b k  $ z t + Y k  9 (5.11) 
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where ak = O1k($, $2, * * . )  $ ( k - e ) z ) ,  

Bk = @ k ( $ , $ t ,  * . . ~ ~ ( k - l ) z ) *  

Yk  = Yk($ ,  $ 2 9  *..) $(k - l ) z ) .  

As a result, (5.8) reads 

&[a, T+a2 a, T+ . .. +a, a, rJ +$,,[a, T + p 2  a, T+ . . . +p, a, 
+ [YZ32 T+ .. . +Y, a, TI 

= 9, a, x+ . . . + $(n+l) , a, x+ 
(5.13) 

The dependence on q5t and #,, is explicit on the left-hand side and hence is linear. 
Following Olver, we shall exploit this observation to narrow the functional form 
of X. This is done by differentiating (5.13) : (i) twice with respect to 4,; (ii) once with 
respect to $t and once with respect to &; and finally (iii) twice with respect to $zt. 

In  the first instance, we get 
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(5.12) 

in the second 

o = a p q [ ~ , a o ~ +  ...+$(~+,) ,a,x+ba 

$,a,x+...+$,,+,,,a,x+"a 9 

(5.15) 
P 

and in the third 

(5.16) 

Note that in each of these equations the dependence on $(,+,) is explicit. Therefore 

app(an x) = apq(an x) = a,,ca, x) = 0, (5.17) 

X+& 
$3 

and, since the above holds for all values of n =k 0, we conclude that 

a p p  x = fY9, $0 $,A, 
a p q x  = mdh $t,  $,), 

aqqx = QW $4, $,,I. 
We shall not make any use of these results other than to simplify (5.14)-(5.16), which 
become 

(5.18) 

(5.19) 

(5.20) 

o = ~,aPp[a,x-~ 3 (q-i)a,x]+a,,[pa,x+pa x] 
P q  ' 
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We exploit next the explicit dependence on 9,. Clearly, 

V .  Barcilon and F .  bl. Richter 

(5.21) 

qapX+-a P X=a,p+b,q+c, ,  (5.22) 

where a,, b, and c, are arbitrary functions of 9, q5z,. .., $nz but not p = q5t or q = #zt. 

If we were to integrate (5.21), we should find that 

3 
aoX-- (q-l)a,X = a,p+b,q+c,, 

9 

93 

x=S'[~~(~,C.....)+(~C"+~) q - 1  bl(t ,#z,  . . . ) + c l ( f , ~ z , . . . ) ]  d5+9(93(q-l)), 

(5.23) 
whereas the integration of (5.22) implies that 

(5.24) 

where f and Y are arbitrary functions. For these two expressions of X to be 
compatible, we must require that 9 be a linear function, that c2 be identically zero 
and that Y be a constant. In other words, X must have the following form: 

XC$,$z, . . . 7 9 t , $ z t )  = A(9,4z,  **.99nz)9t+B(9,9z,  ... ,4nz)9zt+C($,9z7...,9nz). 
(5.25) 

In  view of (5.25) and (5.13), the search for conservation laws has been reduced to 
Thus the dependence of X on $t and dzt is at most linear. 

the search for four functions T ,  A, B and C of 9, $z, . . . , $nz such that 

pL,T+qM,T+N,T=p + D n C + 3 A B ,  4 

(5.26) 
9 

where 

and 

Because of the explicit dependence on p and q, (5.26) reduces to a system of three 
coupled first-order partial differential equations : 

L, T = D, A+B9-', (5.27) 

M, T = D, B - 34z #-'B + A ,  (5.28) 

N, T = D, C+ 39z q5-lB. (5.29) 

We continue to chip away at the functional form of T ,  A, B and C by the same 
means as previously, namely by relying on the explicit dependence of certain 
variables. The obvious candidate at this stage is q5,,z. We have assumed that T, A, 
€3 and C depend on $nz. Actually, dnZ can only enter in 2'. Indeed, if A, B and G were 
to depend on q5nz, then a term linear in $(n+l) would appear in the right-hand sides 
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of (5.27)-(5.29) that could not be balanced by any other such term on the left-hand 
side. Therefore 

(5.30) 

Since at, Bk, yk do not depend on $,,= for k = 2, , . ., n we can differentiate (5.27)-(5.29) 

(5.31) 
once with respect to $nz:  

L, F = an-l A ,  

M, P = an-l B ,  

N, F = an-l c, 
where F = anT. 
Differentiating a second time, we get 

L,G = 0, 

M,G=O, 

N n G = O ,  

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.37) 

(5.36) 

where G =  anF. (5.38) 

We have arrived at three first-order partial differential equations for G, which is 
amumed to be a function of n + 1 variables. The treatment of these equations differs 
according to whether n + 1 is greater or smaller than 3. We refer the reader to Smirnov 
(1964, p. 357) for a lucid account of the theory of coupled first-order partial 
differential equations. 

We consider here only the caae n = 2, which subsumes the caaes n = 0 and 1. The 
case n = 3 is considered in Appendix B. In  other words, we search for conservation 
laws of the form T = T($,#z,#zz). For this case, the system (5.35)-(5.37) has only 
the trivial solution (Smirnov 19f34, p. 358) 

G = Go = constant. (5.39) 

Consequently T = fGo$f,+@($,$z)$zz+ ! w , $ z ) *  (5.40) 

As a result (5.31)-(5.33) become 

i30@+$-3Go = a l A ,  

a, a- 34z $ - - 1 ~ ~  = a, B, 

3$z4-1~0 = a, c, 
from which we deduce that 

(5.41) 

(5.42) 

(5.43) 

15 
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where Q = Q(9, $ z )  is an arbitrary function at this stage. In  order to deduce the form 
of Y we turn to (5.27)-(5.29) which read 

a, Y+q5-3@ = $z?30 A+9-3B, (5.45) 

(5.47) 

After substituting the expressions for A ,  B ,  C and @ in (5.45)-(5.47) we deduce that 

Go = 0, (5.48) 

a, Y-39z9-1@ = $za,B-3$z~-1B+A, (5.46) 

39z 9-1~~ = 9, a, c+ 39z 9 -1~ .  

6 = -4a09-b,93, (5.49) 

6 = ;ao 9 + bo 93, 
a0 a0 2 !P = 9, a, Q + -+- $z - bo 9, 
29 2 

(5.50) 

(5.51) 

where a, and b, are arbitrary constants. In summary 

(5.52) 

(5.53) 
d 

and x = [Q($$J,)l+? ( - ~ 9 z t + 3 9 ) - - o [ 9 3 ( f z , - 1 ) 1 .  

Obviously, we can discard the Q-terms since they lead to trivial conservation laws. 
The remaining terms provide two conservation laws, namely 

and 

1 1  = - M z t  + 39. 
(5.55) 

To is related to the conservation of mass of the melt. The meaning of T, is not as 
clear; we should mention that the form of T, is closely related to the empirical power 
law for the permeability. For K = q5n, 

TI = @+ {L}. 
(n- 1 )  (n-2)  p - 2  

(5.56) 

6. Conclusions 
We have investigated the consequences of the mathematical model proposed by 

McKenzie (1984) to explain the segregation and migration of melts. More particularly, 
we have concentrated on a study of the solitary waves that arise in this model. 

The existence of compaction waves in this model, be they infinitesimal or of finite 
amplitude, is due to the prescribed relation between the voidage and the permeability. 
Equation (3.18), which contains the essential ingredients of this wave phenomenon, 
can be used to understand it. In addition to the conservation of mass, the crucial 
balance of forces in the vertical is one between the friction, pressure gradient and 
buoyancy. In  their simplest form, these three forces are represented by Wzz, - W/qP 
and - 1.  In  the steady state of compaction, a constant pressure gradient counteracts 
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the buoyancy. Suppose that an increment in voidage occurs at  a certain depth. This 
change to the basic state of uniform compaction results in an increase of the pressure 
gradient acting on the solid matrix. As a result, there is an increase in the downward 
flow of solid and a concomitant increase in the upward flow of melt. This upward 
flow in turn causes an increase in voidage at  a depth slightly shallower than that of 
the initial disturbance. 

As long as n > 0, this mechanism is responsible for the propagation of waves, both 
infinitesimal and of finite amplitude. However, finite-amplitude waves occur only for 
n > 2. Indeed, for 0 < n < 2, the trajectories in phase space emanating from ( l , O ) ,  
which represents the steady compaction state, do not form closed curves. In  this 
connection, we should also recall that the general conserved quantity T, is singular 
for n = 2. 

We conclude these remarks by a speculation, namely our belief that, if such waves ex- 
ist in geophysical situations, then they must be unstable to horizontal perturbations. 

We have benefited from conversations with Dr M. Ishii. The work of one of us 
(F.M.R.) was supported by NSF (EAR 8414709). 

Appendix A. Numerical methods 
The general approach adopted is to use simple straightforward numerical techniques 

and run them at sufficiently high spatial and temporal resolution to obtain adequate 
accuracy for the purpose of this paper. The best measure of accuracy comes from using 
the calculated shapes for the solitary waves as initial conditions for the evolution 
equations and noting whether they propagate at the correct speed and without change 
in shape. 

Equation (2.14) is discretized as 

where the superscript indicates the time step and the subscript the vertical grid point. 
The q5 and W grids are staggered such that we have the vertical velocity at the top 
and bottom of the volume elements for which q5 represents the volume average of 
voidage. In  computing the flux we need an estimate of q5 at the boundaries of the 
volume element, namely g5tk+, which we obtain by interpolation. The estimates of 
q5 and W at n+f are obtained by iterating within a time step. 

Equation (2.15) can be put in the form 

W"+r(z) W = s(z), (A 2) 

which is discretized (Hildebrand 1956. p. 241) as 

(1 + & A 2  r6+J W.,, - 2( 1 -&A2 rJ W, + (1 + & A 9  r6-J W6-l 
= &AZ'(Q~+~ + 108, + st-1) + 0(&Azs W(')). (A 3) 

Given the boundary conditions that W = - 1 at the top and bottom of the region of 
interest, the system of coupled equations is solved by inverting a tridiagonal matrix 
by standard methods. 

The shape of a solitary wave, given its amplitude A, background voidage q5, and 
exponent n in the permeability-voidage relation, is found by first calculating 

15-2 
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C(f; $o, n)  from (3.7) for values off in the range (1, A). The integrals are approximated 
using Simpson's rule. Equation (3.10) yields an equation of the form 

df= dC P(f), 

which we solve using a 4th-order Runge-Kutta method with the initial value given 
at a distance E away from the peak of the solitary pulse. The value off at  E is obtained 
by a Taylor expansion, using the second derivative given by (3.13). 

Appendix B. Lack of conserved quantity of the form q(4, $,, +,,, q5,,,) 

differential equations for G. The explicit form of these equations is 
The starting point of our analysis is the trio (5.35)-(5.37) of first-order partial 

L,G aoG+~-3a2G-6$ ,$ -4a3G = 0, (B 1 )  

M,G = a , ~ - 3 ~ , ~ - ~ a , c + [ ~ - - 3 + 1 2 ~ ~ ~ - 2 - 3 ~ ~ , ~ - 1 ] a , ~  = 0, (B 2) 

K,G = 34,4-1a2~-[i24~$-2-34,,4-1]a,~ = 0. (B 3) 

We form all three possible Poisson brackets, namely 

[L,, N,] LJN, G) - N,(L, G) = - 3#, $-, a, G- [34-4 - 244; 4-, + 3#,, a, G = 0, 
(B 5 )  

(B 6)  

(B 7) 

(B 8) 

[M,, N3] M,(N, G) - N,(M, G) = 3$-i a, G- 244, 4 - 2  3, G = 0. 

Adding (B 4) to (B 5 )  yields a,G = 0. 

aoG = a l G  = a,G = 0 As a result 

and consequently 

Therefore, if there exists a conserved quantity T,, it must have the form 

G = Go = constant. 

We next turn our attention to @, which satisfies the following equations: 
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Since these are three equations in four unknowns we solve for 9, A and B in terms 
of C. Omitting some of the algebra, we find that 

In  the above expressions, the tilde denotes fields which are solely functions of 9 and 
q5z. Note that with the above information 

Clearly, the term that is a total time derivative can be thrown out. Therefore, 
redefining the tilde-terms if need be, we can write 

c=b ,  
@ = G o  { --+4-. 9zpz} J 

The situation regarding the determination of Yis quite different. Indeed, we must 
now contend with three equations in one unknown, viz 

(B 21) 

(B 22) 

(B 23) 

After substituting the expressions for A, B, C and @ previously obtained, we find 
that the equations (B 21)-(B 23) are incompatible unless 

Go = 0. 

B 
L,Y+a,@=D,A+,,  

9 
9 
9 

M, Y+ps @ = D, B+ A -  3 -4 B,  

N,Y+y,@=D1C+3'B. 9 
9 

Thus, there is no conserved quantity of the form Ts(9, #z,  &, q5zzz). 
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